
On the quantum statistics of the superposition of coherent and chaotic fields

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1969 J. Phys. A: Gen. Phys. 2 702

(http://iopscience.iop.org/0022-3689/2/6/012)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 11:02

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3689/2/6
http://iopscience.iop.org/0022-3689
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  PHYS.  A ( G E X .  P H Y S . ) ,  1969 ,  S E R .  2 ,  V O L .  2 .  P R I N T E D  I N  G R E A T  B R I T A I N  

On the quantum statistics of the superposition of coherent 
and chaotic fields 

J. PEkINA and R. H O d K  
Laboratory of Optics, Palack? University, Olomouc, Czechoslovakia 
MS. receized 3rd June 1969, in revised form 1 l t h  August 1969 

Abstract. The generating function, the corresponding integrated intensity distribu- 
tion, and the photon-counting distribution and its factorial moments are derived for 
the superposition of coherent and chaotic M-mode fields on the basis of a formalism 
of arbitrary ordering of field operators in quantum optics. An alternative description 
is also given based on a recent analysis of the superposition of coherent and chaotic 
fields in terms of the correlation functions, which makes it possible to derive a number 
of results valid for arbitrary mean occupation numbers per mode from which the 
model considered follows as a special case. Many earlier results obtained for coherent 
and chaotic fields and their superposition are included as special cases and some of 
them complete a table recently published by Jakeman and Pike summarizing results 
obtained in this field. In particular the photon-counting distribution and its factorial 
moments are given for the superposition of coherent and chaotic fields with different 
mean frequencies, which is important in connection with the statistics of heterodyne 
detection of thermal light. The present results generally describe a superposition 
experiment for an N-mode coherent field (e.g. generated by an N-mode laser operating 
far above threshold) and an &?-mode chaotic field (&I' 3 N) as well as a field genera- 
ted by an .U-mode laser operating above threshold. 

1. Introduction 
The statistics of the superposition of coherent and chaotic fields has been studied 

theoretically by a number of authors because of its importance for the description of laser 
light above the threshold of oscillations. The  first papers dealing with this subject were 
published by Lachs (1965) and by Glauber (1966) in which the photon-counting distribu- 
tion and its factorial moments for the superposition of one-mode coherent and chaotic 
fields with the same frequencies were given. Another approach to this problem, based on 
the calculation of the correlation function, was proposed by Morawitz (1965) for one-mode 
fields. Peiina (1967, 1968 a, b) generalized these results to the superposition of ;If-mode 
coherent and chaotic fields with overlapping frequencies ; in this analysis expressions for 
anti-normally ordered field operators have also been included. ,4 more general description 
of the superposition of such fields, based on the description of fields by means of correlation 
functions generalizing the results of Morawitz (1965, 1966), the results of which are also 
valid for M-mode fields, was proposed by Peiina and lLligta (1968). Such an approach 
represents a general description of the superposition of coherent and chaotic fields and 
enables us to derive all results for the model with different mean frequencies considered 
below as a special case. Some recent investigations of the problem of ordering of field 
operators in quantum optics and correspondence between functions of c numbers and 
functions of operators (q numbers), investigated by ilgarwal and Wolf (1968), by Wolf and 
Agarwal(l969) (for another approach see also Lax 1968) and further by Cahill and Glauber 
(1969 a, b), make it possible to derive very general formulae describing the statistical 
properties of the superposition of coherent and chaotic fields with respect to arbitrary 
ordering of field operators, which was done by P e h a  and HorAk (1969 a, b, to be referred 
to as PH). In  particular, formulae concerning anti-normal ordering of field operators 
could have great importance in connection with detection of optical fields by means of the 
so-called quantum counters operating by stimulated emission rather than by absorption 
(Mandel 1966, Glauber, to be published). 

In  a recent paper by Jakeman and Pike (1969) it was pointed out that additional spectral 
information can be obtained by the use of heterodyne detection, where the chaotic field is 
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superimposed, before detection, on a known coherent component. In  this way the centre 
frequency of the chaotic field can be determined. However, the general heterodyne problem 
for chaotic (thermal) light includes the case when both the centre frequency of the chaotic 
field and the frequency of the coherent field are arbitrary and differ from one another. 
That is why these authors studied the superposition of one-mode chaotic and coherent 
fields with different frequencies in greater detail. I n  particular they derived the corres- 
ponding expressions for the generating function, the intensity distribution and the second 
factorial moment of the photon-counting distribution, but they did not give the photon- 
counting distribution, which is an important measurable quantity, and its arbitrary-order 
factorial moments. All results obtained to date for the superposition of one-mode coherent 
and chaotic fields (and for the coherent and chaotic fields alone as special cases) by these 
authors as well as by a number of other authors have been arranged in table 1 of the paper 
by Jakeman and Pike (1969, Pike, to be published). 

The  main purpose of this paper is to complete Jakeman and Pike's table for the super- 
position of one- mode coherent and narrow-band chaotic fields with different frequencies, 
i.e. to derive the photon-counting distribution and its factorial moments of arbitrary order 
for this case. However, using our earlier results concerning M-mode fields and the general 
formalism of arbitrary ordering of field operators mentioned above we shall be able not only 
to complete the table but also to generalize all results in the table concerning narrowband 
chaotic fields, coherent fields and their superposition (the third, fifth, seventh and ninth 
lines of the table) to M-mode fields and to arbitrary ordering of field operators, i.e. to 
derive the generating function, the integrated intensity distribution and its moments, and 
the photon-counting distribution and its factorial moments for this case. Furthermore, we 
show that all these results follow as special cases from a slight extension of an analysis by 
Peiina and Migta (1968), carried out in terms of the correlation functions. Of course, such 
an analysis can also serve for derivation of equations describing fields with an arbitrary 
spectrum (cf. the first line of the table). Present results generally describe a superposition 
experiment for an "mode coherent field (e.g. generated by an N-mode laser operating 
far above threshold) and an iW-mode chaotic field ( M  2 N )  as well as a field generated 
by an M-mode laser operating above threshold. 

In  9 2, the s-ordered form of the generating function for ,W-mode fields is derived using 
the formalism proposed by PH and the corresponding integrated intensity distribution is 
given. In  4 3 the photon-counting distribution and its factorial moments as well as the 
s-ordered moments of the integrated intensity distribution related to arbitrary ordering are 
obtained. An alternative description is also given based on a recent analysis of the super- 
position of coherent and chaotic fields in terms of the correlation functions enabling us to 
derive a number of results valid for arbitrary mean occupation numbers per mode from 
which the model considered follows as a special case. In  3 4 the correspondence with earlier 
results is discussed. In  0 5 some perspectives are outlined. 

2. s-ordered generating function and integrated intensity distribution 
The one-mode generating function for the considered model of the superposition of 

coherent and chaotic fields was calculated by Jakeman and Pike (1969) by the use of the 
Fredholm determinant of a homogeneous integral equationi 

where fi is the photon number operator, ( n T )  and (nc> are the mean occupation numbers of 
t For our purpose Jakeman and Pike's generating function Q ( s )  is slightly modified: 

(exp(ixk)), = Q( -ix). We also put G( = 1 for the photoefficiency r so that ( n )  = r (  W ) ,  = (W),, 
where W is the integrated intensity. 



704 J .  Per’ina and R. Honik 

photons in the chaotic and the coherent fields, respectively, and w = 2 sin(tfl)/Q, where 
!2 represents the difference between the mean frequency of the chaotic field and the fre- 
quency of the coherent field multiplied by the time interval T of the observation. The  
subscript N expresses the fact that this generating function is normally ordered. We see 
that the one-mode generating function (2.1) can be interpreted as a product of the generating 
function describing the superposition of chaotic and coherent fields with mean occupation 
numbers (nT) and ( n c ) ,  w2 and the generating function describing a purely coherent field 
with a mean occupation number ( a c ) (  1 - w 2 ) ,  

We can consider a more general case, i.e. the superposition of a coherent field which is 
in a coherent state I I f = , I P A )  (we assume that p2, = 0 for h = Alf+l, ...) with the 
diagonal representation weighting function 

M 

dc({.aH = n a(% -Pi.> 
a = i  

and a chaotic 114-mode field described by 

The sdperposition of these two fields is described by a general formula (9.15) of Giauber 
(1965) expressing the quantum superposition principle 

Thus the generating function becomes 

where 

(2.5) 

Here A  ̂ is the detection operator. 
Now considering the 2M-mode generating function (2.5) with mean occupation num- 

bers (nTa) = (nT)/M per mode, h = 1,2,  ..., M and (nT?,) = 0, h = M+1, ..., 21W, 
where (nT) is the mean occupation number of photons in the whole chaotic field (results 
for fields with unequal mean occupation numbers per mode will be given later), we can 
easily obtain from (2.5) the normal generating function for the superposition of ;V-mode 
coherent and chaotic fields with frequency shifts, described by wa, between modes X and 
h+iV by writing w L 2 ( n C R )  instead of (nca>,  A = 1, ..., and (ncn ) ( l  - u ~ , ~ )  instead of 

+ M ) : 
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where w2(nc> = C y w , 2 ( n e , )  (02 = Z ~ o ~ 2 < ~ c ~ ) / C ~ ( n c , ) )  and ( n c )  = CY{ncA).  
For hi! = 1 we again obtain the one-mode generating function (2.1). 

In  general the generating function (2.5) as well as the special case (2.6) describes the 
superposition of an M-mode chaotic field with an N-mode coherent field (M 2 N ) .  
The coherent N-mode field can be generated by a laser operating on N modes far above 
the threshold, where it is approximately in the coherent state ]{pa)), or by N one-mode 
lasers operating in this region, fields of which are superposed so that the resulting field is 
again in the coherent state l{pA)).  But such a generating function also describes the statis- 
tical properties of light of an M-mode laser operating above the threshold where the 
model of the superposition of 174-mode chaotic and iW-mode coherent fields is appropriate. 
Also scattering experiments using an 144-mode laser in this region will be described by the 
present formulae. In  principle the generating function (2.6) is suitable for the description 
of heterodyne detection of a chaotic 174-mode field, where the chaotic field is superimposed 
on a coherent N-mode field (M 2 N )  with frequency shifts of the corresponding modes 
characterized by w2. However, we see that the generating function (2.6) is of the same 
form independent of the number iV < of the coherent modes. Hence, the practically 
more important case of detection of an ,!-mode chaotic field superimposed on a one-mode 
coherent field  ill be described by the generating function (2.6) and by all formulae 
following from it given below, putting (nca)  = 0 for all modes except one. 

I n  order to obtain the s-ordered 114-mode generating function we use an equation of PH 
enabling us to express the s-ordered generating function by means of the normal generating 
function in the form 

Substituting (2.6) into (2.7) we arrive at 

ixw2 (ne ) 
1 - ix{ <nT>/M+$( l  -s)) 

ix (nc )( 1 - 0 2 ) 2  
1 -+(l -s)ix 1 + 

If we compare (2.8) with (2.6) we see that while the generating function (2.6) includes 
one pole (-i1%'/(nT)) only the generating function (2.8) includes two poles 
( - i/{ (zT>/M+ +( 1 - s)) and - 2i/( 1 - s)). From this we can conclude that the integrated 
intensity distribution related to the s ordering of field operators for s # 1 and o # 1 
will be qualitatively different from the integrated intensity distribution related to the 
normal ordering of field operators. On the other hand if w = 1 (the mean frequencies 
of the coherent and chaotic fields are the same) all these distributions are of the same 
form, as one can see from the corresponding generating function (PH) 

ix (ne ) 
1 - ix( (nT ) / M + i (  1 -s)) 

having one pole (- i/((nT?/M+ $(l - s))) for all s (- 1 < s 6 1). The  generating function 
(2.8) can be decomposed in a double series of the powers of ix with coefficients proportional 

~6 
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to the Laguerre polynomials. .This can serve, in principle, for determination, for example, 
of the s-ordered moments 

dk 
d( ix) 

but there are some difficulties in doing this. Consequently we shall use another method of 
determining this and other quantities later. 

In  order to determine the distribution P( W, s) of the integrated intensity W related to 
the s-ordered operators we use another result of PH expressing P(W, s) by means of 

< A k ) s  = - (exp(ixA) >, I1x = 0 

P(W, 1) = Ph.(W): 

where 1,- 
the generating function (2.6) with the aid of a Fourier transform: 

is the modified Bessel function. Distribution P,y( W )  can be calculated from 

PN(W) = - (exp(ixA)), exp( - ixW) dx 

0 W <  (n,)(1-02) (2.11) 
where the residuum theorem was used. Substituting this result into (2.10), after some 
mathematics we obtain, writing the IM-, function in the form of the series, 

I P( w, s) = \ <nc >(I - wz),l 

Y 1 ) j 2  

1 <nC ) (nT - 
- 2 w (nc ) --- 

xexp[ , 1 - s  <nT>/ l%!+$(1-s) ~%!(l-s){(nT)/~44+$(l-s)} 

(-4' 2 

L y ( X )  = { ( I+M-l ) !}Q 2 , ' = 0 1 ! ( I  - j )  ! ( j  + f44 - 1) ! 
is the Laguerre polynomial. 

3. The photon-counting distribution, its factorial moments and the s-ordered 
moments of P( W, s) 
The simplest way of obtaining the photon-counting distribution is to use the photo- 

detection equation (Mandel 1958) 

p ( n )  = exp( - W)P,( W )  d W. 
n! 

Substituting (2.11) into (3.1), where the substitution W = w'+ ( n c ) ( l  - w 2 )  ismade and 
the binomial theorem used, we arrive at 
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where p’( j )  is the photon-counting distribution 

corresponding to the distribution (Pe2ina 1967) 

Hence the resulting photon-counting distribution is 

1 xi { (nc) ( l  - w2))”-j 
j = o  ( n - j ) ! ( j + M -  l)! 

707 

( 3 4  

(3 .5)  

One can obtain the factorial moments of p(n) (the moments of PN( w>) in the same way 
if the moments of (3.4) (factorial moments of (3 .3))  (Peiina 1967, 1968 a, b) 

k! 
n - k ) !  (nT ) , ( k  + M - 1) ! 

- 

are used. One obtains 

= (+) n - k ) !  

Of course, equations (3.5) and (3.7) can be obtained from the generating function (2.6) 
taking into account that 
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Using these identities for exp{ixw2 ( n c ) / ( l  - ix (nT) /M) ) ,  decomposing 
exp{ix(n,)(l - wz)} in the Taylor series at ix = 0 or at ix = - 1 and using 

or 
dn  

d(ix)n 
p(n) = (n!)-' -- (exp-(ixA) ) N l i r =  - 1  

we again arrive at (3.5) or (3.7). 

sion (Pefina and Mi3ta 1968) 
We wish to point out here that expression (3.7) can easily be obtained from the expres- 

which is a result of a general analysis of the superposition of coherent and chaotic fields in 
terms of the correlation functions. As one can see from (2.6) the generating function is a 
product of the generating function of the 1'-mode superposition with mean occupation 
numbers ( n T ) / M  per mode in the chaotic field and (ncA)wA2 in the coherent field and the 
generating function of the purely coherent M-mode field with mean occupation numbers 
(n, ,)(l-w,2) per mode (the full occupation number in the coherent 
field is (nc)w2+ ( n c ) ( l  - w 2 )  = ( n c ) ;  hence the parameter w distributes the mean 
occupation number (nc> between the coherent part of the superposition and the purely 
coherent field. For w = 1 (Q = 0 )  ( n c )  belongs fully to the superposition; for w = 0 
(Q = CO or the zeros of the function 2sin$Q/Q) ( n c )  belongs fully to the purely coherent 
field and we have a product of the generating functions of the purely chaotic and purely 
coherent fields in this case. Therefore we obtain from (3.9), putting (nTA)  = 0 for 
h = M +  1, ..., 21M and ( n T A )  = ( n T > / X  for h = 1, ..., and using the asymptotic 
expression for L,, 

Writing 

and using the following identity for the Laguerre polynomials 

.and the polynomial theorem we again arrive at (3.7)) where 

M M 

2 ( n u )  -+ 2 <ncn>w>? = <nc>w2 
i. A 
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and 
2 >VI M 

(non ) = 2 <%,? )(I - = <nc )(I -U”. 

l . = M + 1  A 

Using (3 .8b)  we obtain the photon-counting distribution in the same way: 

(3.12) 

and putting (nT2,} = 0 for X = A!l+-l, ..., 21W and (nT;.) = (n,)iM for X = 1, ..., L%f 

and using (3.11) we arrive at (3.5) again if 

M 

2 <nci. > + (nc >a2 
), 

and 
2 1M 

2 <%A> = (nc)(1-W2). 
A = M + 1  

If the occupation numbers in the chaotic field are different we obtain for the generating 
function of the superposition of chaotic and coherent fields with shifted frequencies 

ixwA2 (ncn } i 1 - ix (nTA ) 
) exp{ix (nc)(l -w’) ) .  (3.13) 

A 

M 

= n( 1 - ix (nTA ))-I exp 

For the moments { W”), and the photon-counting distribution p(n) we have 

and 

(3.15) 
respectively. The  corresponding integrated intensity distribution PN( w> can in principle 
be determined from the moment sequence { { Wk)),). 

There is a physical interest in extending these results to the case of s ordering of field 
operators (e.g. for s = - 1 we shall obtain the moment equation for the description of 
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detection of the field by means of the quantum counters). This can be done by substituting 
(3.7) into the following equation (PH) 

N 

k! 
( W k ) s  = (k+;W-l)!  

and so we obtain 

k! 
( W k ) s  = (k+ M -  l)! 

(3.16) 

(3.17) 

The s-ordered moments (Wk) ,  for arbitrary mean occupation numbers per mode can 
be obtained by substituting (3.9) into (3.16) or from the s-ordered generating function 

which follows from (2.7). We obtain in this way 

A more general distribution than (2.12) (with arbitrary mean occupation numbers per 
mode) can be obtained from the sequence {(Wk>>,), i.e. from (3.19) using the Laguerre 
polynomials (Morse and Feshbach 1953, chap. 8, for some existence problems see Peiina 
and Mi3ta 1969, Peiina and Horbk 1969 b, Peiina, to be published): 

2 

P ( w , ~ )  = W M - ~  exp(- W )  c ~J;-'(W> (3.20) 
n = O  

where 

(3 21)  

under the assumption that 

{(n + M -  l)!J3 lom Pz( W, s ) W I - ~  exp( W )  d W  = 2 \c,;z < to. (3.22) 
n=O n! 

4. Special cases 
If we put w = 1 in (2.12) and use the relation 

we obtain (PH) 
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where we have also used the identity (Morse and Feshbach 1953, chap. 6) 

(4.3) 

From (3.17) one can obtain (3.7) again by putting s = 1 and using the asymptotic 
formula for the Laguerre polynomial 

Lit?-? 

Similarly, putting w = 1 (Q = 0) in (3.17) we obtain (PH) 

Further, equations (3.5) and (3.7) for iW = 1 complete the third line of table 1 in the 
paper by Jakeman and Pike (1969). If we put k = 2 and irll = 1 in (3.7) we arrive at 
equation (34) of Jakeman and Pike (1969): 

Some other physically important results can be obtained from (2.12), (3.17) and (3.19) 
for s = 0 and s = -1, which correspond to the symmetric and anti-normal orderings of 
field operators respectively. The  case s = - 1 is physically meaningful in connection with 
the determination of the statistical properties of the fields considered by means of the 
quantum counters operating by stimulated emission rather than by absorption (Mandel 
1966, Glauber, to be published). A number of new results can also be obtained by put- 
ting w = 0 (0 + E) in the above equations. The  corresponding equations for the 
coherent field can be obtained by putting (tzTA) = 0 for all X ((n,)  = 0) and for the 
chaotic field by putting (nci , )  = 0 for all X ( ( n c )  = 0). 

5. Conclusion 
In  conclusion we should like to point out that the present analysis serves for the study 

of the statistical properties of the superposition of coherent and chaotic fields of an arbitrary 
spectrum (it can also serve for obtaining the formulae completing the first line of 
Jakeman and Pike's table). However, in this approach one has to consider some sampling 
points of the spectrum only. These questions and some possibilities of extending the present 
method to a continuous spectrum are under investigation now and will be dealt with in a 
forthcoming paper. 
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